Главная » Электирика

Блок питания для светодиодов схема





ДРАЙВЕР ДЛЯ МОЩНЫХ СВЕТОДИОДНЫХ МАТРИЦ 10 - 100 W С НАПРЯЖЕНИЕМ ПИТАНИЯ 32 -34 V

В последнее время мощные сверхяркие светодиоды в качестве источников света всё больше завоевывают рынок, вытесняя лампы накаливания и энергосберегающие люминесцентные лампы, Тому есть несколько причин: малое энергопотребление, большой срок службы, небольшие габариты, безопасность, удобство монтажа. Мощные светодиоды выпускаются как с одиночным кристаллом, так и с несколькими, расположенными на одной подложке. Из-за нелинейной вольтамперной характеристики питание светодиодов осуществляется только стабильным током, величиной, определяемой паспортными данными прибора. Устройство, обеспечивающее стабильный ток питания нагрузки, обычно называют драйвером. Основные требования к драйверу: высокий коэффициент полезного действия, надёжность, стабильность выходного тока независимо от напряжения питания. Чаще всего схемотехника драйверов основана на использовании импульсных схем с использованием накопительного дросселя, ключевого элемента и схемы управления ключевым элементом, работающим на частоте 30 -100 кГц. Если рабочее напряжение светодиода ниже напряжения источника питания, в схеме драйвера светодиод подключается последовательно с дросселем и ключевым элементом (наиболее распространённая ситуация), а если на светодиод требуется подать напряжение выше, чем у источника питания - используется схема с накопительным дросселем, ток через который прерывается с высокой скоростью, что вызывает появление всплесков напряжени я в десятки раз выше питающего. Повышенное напряжение подаётся на светодиод, ток в цепи которого контролируется и используется для регулирования выходного напряжения. Драйверы для питания низковольтных светодиодов от источников напряжения 90 - 240 В широко распространены и доступны, схемотехника достаточно освещена в различных публикациях, в драйверах часто используются специализированные микросхемы, обеспечивающие минимальное количество внешних элементов. В случае, когда несколько последовательно соединённых светодиодов или многокристальная светодиодная матрица подключается к источнику с меньшим напряжением схема незначительно изменяется. На рисунке показана схема такого драйвера для светодиодной матрицы с напряжением около 32В и рабочим током 350 мА.

Основными элементами в схеме являются: накопительный дроссель L1. ключевой транзистор VT1 и микросхема задающего генератора DA1. Микросхема обеспечивает импульсы с короткими фронтами для управления транзистором VT1. что позволяет получить на стоке транзистора всплески напряжения до 50В (зависит от параметров дросселя, транзистора и крутизны фронтов управления). Ток на сборку светодиодов поступает через токоизмерительный резистор R7. При достижении тока 0,35А напряжение на R7 составляет 0,7В, транзистор VT2 открывается и обеспечивает прерывание импульсов запуска. При снижении тока импульсы запуска транзистора VT1 появляются вновь, обеспечивая стабилизацию тока на нагрузке. Резисторы R3, R4 служат для ограничения выходного напряжения на выходе при отключении нагрузки, предотвращая выход из строя электронных компонентов.

В схеме можно использовать подходящие дроссели, намотанные проводом 0,3. 1,0 мм на стержневых ферритовых сердечниках (несколько хуже на ферритовых кольцах), имеющие индуктивность 40 - 200 мкГн. Габариты дросселя определяются требуемой мощностью нагрузки. В качестве транзистора VT1 можно использовать n- канальные полевые транзисторы, имеющие небольшую ёмкость затвор-исток, ток стока 5 -30А и максимальное напряжение стока свыше 55В. Конденсаторы С2, С4 должны иметь низкое внутренне сопротивление для обеспечения большого импульсного тока через дроссель L1. желательно использовать танталовые конденсаторы для поверхностного монтажа. Недостаток схемы - сильная зависимость работы схемы от параметров дросселя и полевого транзистора.

У автора возникла необходимость переделать распространённые Китайские светодиодные прожекторы с напряжением питания 90 -240 В на напряжение 12 В. В прожекторах используются светодиодные матрицы 10 - 100 Вт с рабочим напряжением 32-34 В (матрица из 9 кристаллов ). Поиски готовых драйверов в торговой сети не привели к успеху - найденное подходило только для низковольтных светодиодов. Из-за большой требуемой мощности и условия некритичности к типу используемых элементов схема драйвера была несколько доработана. В качестве задающего генератора использована распространённая микросхема MC33063AP1. имеющая более чувствительный вход обратной связи по току (1,2 В вместо 2,5 В у предыдущей схемы). Для формирования запускающих импульсов с короткими фронтами для полевого транзистора используется микросхема- драйвер TLP250. часто используемая в различных преобразователях и источниках бесперебойного питания для управления мощными полевыми или IGBT транзисторами. Использование этого драйвера позволило использовать практически любые мощные полевые транзисторы, например IRF8010. что позволяет легко получить мощность на выходе 100 Вт и более.

В качестве дросселя L1 использовались готовые катушки диаметром 15 мм, намотанные на стержневых ферритовых сердечниках от старых мониторов проводом 0,8 - 1,2 мм. Индуктивность катушек должна составлять 40 - 160 мкГн. Чем выше индуктивность, тем ниже может быть рабочая частота задающего генератора. При индуктивности 40 мкГн она должна быть около 100 кГц, а 160 мкГн - 30 кГц. Ток нагрузки определяется сопротивлением резистора R4. На нём всегда падает 1,25 В. Сопротивление этого резистора подсчитывается по формуле: R ( Ом) = 1,25 / I нагрузки (А). Резисторы R2, R3 и стабилитрон VD2 служат для ограничения выходного напряжения на уровне 50В при отключении нагрузки, в противном случае напряжение на выходе может достигнуть 100 В и более.

Схема имеет высокий КПД, достигающий 88%, поэтому нагрев элементов минимальный. Радиатор транзистору VT1 не требуется, достаточно охлаждения на печатную плату (см. снимок и чертёж печатной платы).

Схема может использоваться для питания цепочек светодиодов или светодиодных матриц с рабочим напряжением 15 - 50 В. При иной нагрузке и выходном напряжении необходимо пересчитать сопротивление R4. а также соотношение резисторов R2, R3. Может потребуется замена диода VD1 на более мощный.

Правильно собранная схема начинает работать сразу. Если нет уверенности в исправности элементов или правильности монтажа, вначале вместо светодиодов подключают нагрузочный резистор с таким расчётом, чтобы при нормальном режиме ток через него и напряжение совпадали с рабочими параметрами светодиода. В случае использования 10 W светодиодных матриц с рабочим напряжением 32В и током 0,35 А резистор должен быть сопротивлением примерно 100 Ом и мощностью 10Вт. Плату подключают к блоку питания через ограничительный резистор с сопротивлением 3. 5 Ом. Убедившись, что всё работает нормально и ток потребления не превышает расчётного, резистор отключают.

ПЕРЕДЕЛКА ЛЮМИНИСЦЕНТНОЙ ЛАМПЫ НА СВЕТОДИОДНУЮ

Предлагаю вашему вниманию очередную переделку связанную с применением светодиодов. в данном случае готовой LED ленты. За основу был взят китайский светильник с люминесцентной лампой, точнее его каркас.

Оригинальный светильник имел длину 50 см, лента бралась 1 метр при ширине 8 мм, приклеивалась в два ряда. Лента однокристальная, с напряжением 12 вольт, мощность потребеления 4,8 ватт на метр, 60 светодиодов. Теперь основная задача - чем запитать? В качестве инвертора, то есть блока питания, использован электронный балласт от которого раннее питалась лампа, но немного переделанный.

Схема переделки электронного балласта для питания светодиодов

Суть переделки заключается в том, чтобы из балласта сделать импульсный блок питания для LED ленты. Для этого нужно ВЧ дроссель переделать в понижающий трансформатор и включить согласно схемы. Примерно так это будет выглядеть:

Обмотку дросселя не трогать - она в данном случае будет первичной обмоткой, а вторичку придется намотать самостоятельно. Для этого нужно разобрать сердечник, (нагреваю феном до 300 градусов, пока не размягчится лак, далее просто отсоединяем две половинки).

Количество витков может отличаться, поэтому сверху обмотки не нужно наматывать изолируемый слой, в процессе наладки проще смотать часть витков. Примерный расчет: 2 витка на вольт, смело мотается 26-30 витков, а потом излишек сматывается. Выпрямительный диод и конденсатор берется из дешевой китайской зарядки, устанавливается рядом.

Вот такая относительно не сложная переделка лампы на экономичную и долговечную светодиодную. основная задача выполнена, исключен нагрев, увеличена время службы, снижение энергопотребления. Таким образом можно не только маломощные, но и стандартные потолочные ЛДС модернизировать, естественно с более мощным БП.

Примерный расчёт. смотрим мощность ленты на метр и мощность балласта. Надо чтоб эти два значения примерно совпали. То есть балласт 11-13 Вт на транзисторах 13001 свободно питает 2 метра ленты (9,6вт) без нагрева. Но на всякий случай лучше делать блок питания с запасом.

В результате переделки общее потребление снизилось в два раза по сравнению с люминесцентной лампой, при фактически одинаковой светоотдаче потребление тока 0,02 А, мощность около 4,5 ватта. Автор конструкции - igRoman -

Схемы питания светодиодов

Введение

Использование светодиодов для освещения и индикации #8212 это надежное и экономичное решение. Светодиоды имеют очень высокий КПД. надежны, экономичны. безопасны. долговечны в сравнении с лампами накаливания и люминесцентными лампами. В данной статье рассматриваются способы включения светодиодов. Описываются способы питания светодиода от компьютера .

Что такое светодиод и как он работает

Светодиод #8212 это, во-первых, диод. И точно так же как у обычного диода, у светодиода есть два вывода (контакта питания): анод ( плюс ) и катод ( минус ). Это связано с тем, что светодиод является полупроводником, то есть, проводит электрический ток только в одну сторону (от анода к катоду), и не проводит в обратную (от катода к аноду).

Итак, для того, чтобы светодиод засветился, надо пропускать через него электрический ток в направлении от анода к катоду. Для этого следует подать на его анод положительное. а на катод #8212 отрицательное напряжение.

Тут и начинается самое неприятное. Оказывается, что светодиод нельзя подключать к источнику питания напрямую, поскольку это приводит к немедленному сгоранию светодиода. Причина сего поведения кроется в следующем. Выражаясь простым бытовым языком, светодиод является очень жадной и неразумной личностью: получив неограниченное питание он начинает потреблять такую мощность, которую физически не способен выдержать.

Как мы все уже догадались, для нормальной работы светодиоду нужен строгий ограничитель. Именно с этой целью последовательно со светодиодом устанавливают резистор, который служит надежным ограничителем тока и мощности. Этот резистор называют ограничительным.

Какие бывают светодиоды

Во-первых, светодиоды можно разделить по цветам. красный. желтый, зеленый. голубой. фиолетовый. белый. Большинство современных светодиодов выполнено из бесцветного прозрачного пластика, поэтому невозможно определить цвет светодиода не включив его.

Во-вторых, светодиоды можно разделить по номинальному току потребления. Широко распространены модели с током потребления 10 миллиампер (мА) и 20 мА. Следует помнить, что светодиод не в состоянии контролировать потребляемый ток. Именно поэтому мы вынуждены использовать ограничительные резисторы.

В-третьих, светодиоды можно разделить по такому параметру, как падение напряжения в открытом состоянии при номинальном токе. Несмотря на то, что про этот параметр нередко забывают #8212 его влияние весьма и весьма значительно. Благодаря этому параметру иногда можно избавиться от ограничительного резистора .

Подключаем светодиод к компьютеру

Светодиод(ы) можно подключить к компьютеру разными способами.

Для подключения светодиодов в качестве простого освещения удобно использовать разъемы блока питания, выдающие 5 и 12 вольт. Для подключения светодиодов в качестве светомузыки удобно использовать LPT порт компьютера.

Подключение светодиодов к блоку питания

Блок питания компьютера #8212 это замечательный источник питания для светодиода или линейки из светодиодов, поскольку он вырабатывает стабилизированное напряжение +5 вольт (В) и +12 В.

Итак, разъем имеет четыре контакта, к которым подходят четыре же провода: два из них черные #8212 это «ноль», один красный выдает напряжение +5 вольт, и один желтый выдает +12 вольт.

Рассмотрим схему подключения одного светодиода.

Усилители

Блоки питания

Индикаторы

Микросхемы

Программаторы

Адаптеры

Микшеры

Тестеры

Радиоприемники

Радиомикрофоны

Радиостанции

Переговорные устройства

Металлоискатели

Гирлянды

Омметры

Частотомеры

Осциллографы

Измерительные устройства

Охранные устройства

Сигнализации

Сигнализаторы

Термометры

Терморегуляторы

Регуляторы яркости

Регуляторы напряжения

Регуляторы мощности

Генераторы

Детекторы

Управление освещением

Источники:





Простые полезные советы

Открыть вино без штопора: Если под рукой не оказалось штопора, то бутылку с вином можно открыть иным способом. Необходимо вкрутить в пробку шуруп или саморез по дереву, после чего необходимо при помощи плоскогубцев выдернуть пробку из бутылки удерживая шляпку самореза. Необходимо так же помнить, что при вдавливании пробки в бутылку есть вероятность того, что бутылка может лопнуть от давления.

Футляры для болтиков и гвоздей: Для удобства хранения болтиков, гвоздей, шурупов и т.д. очень удобно использовать банки с накручивающимися крышками. Прибейте крышки к дну навесного шкафа и вкрутите в низ банки с содержимым. Теперь всякая мелоч будет на своем месте.




Комментариев пока нет!

Поделитесь своим мнением

Навигация


Наиболее читаемые

Какой фильтр для воды лучше форум

какой фильтр для воды лучше форумСергей, в Вашем случае ни кто не скажет ничего другого, кроме уже написанного Ольгой.Регистрация: далее...


Как взять в аренду земельный участок

Как арендовать земельный участок у городских властей?Согласно действующему Земельному кодексу как юридические, так и физические лица могут взять в аренду землю, далее...


Укладка теплого пола на деревянный пол

Теплый пол на деревянный пол: пример устройства водяной системы на лагахНовые технологии всегда являются предметом споров и дискуссий. К примеру, бытует далее...


Популярные

Почему генератор выдает низкое напряжение (25)

Чем смазать газовый кран на плите (21)

Светодиодные лампы т8 схема подключения (20)

Диаметр труб для водопровода частного дома (18)

Ремонт зарядного устройства для шуруповерта (16)

Почему газ горит красным пламенем (15)

Фанера под линолеум на деревянный пол (14)

Покраска потолка по старой краске водоэмульсионной краской (14)



Последние публикации
Какие люстры подходят для натяжного потолка По каким критериям выбрать люстру для натяжного потолка?СодержаниеРазнообразие
Какие потолки лучше глянцевые или матовые Какой натяжной потолок выбрать? (матовый, глянцевый или сатиновый)Вы приняли решение установить
Каким валиком лучше красить потолок Как правильно красить валиком потолокЕсли вы задались вопросомКак
Как заделать дырку в потолке Ремонт потолка своими рукамиНатяжной потолокОтштукатуренный потолокГипсокартонный потолокЕсли у вас вдруг
Как визуально сделать потолок выше Как сделать низкий потолок визуально вышеВ большинстве типовых квартир и частных
Наиболее читаемое

Фундамент для дома из бруса своими руками

Крепление бруса к фундаментуОснова таких строений как баня возле дома, удобный...


Как сделать теплицу из пластиковых бутылок

Парник или теплица из пластиковых бутылокУ настоящего огородника ничего не пропадает...


Крышка на колодец своими руками

Как самостоятельно изготовить крышку на колодец?Крышка для колодца любого назначения –...